openmls/treesync/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
//! This module implements the ratchet tree component of MLS.
//!
//! It exposes the [`Node`] enum that can contain either a [`LeafNode`] or a [`ParentNode`].
// # Internal documentation
//
// This module provides the [`TreeSync`] struct, which contains the state
// shared between a group of MLS clients in the shape of a tree, where each
// non-blank leaf corresponds to one group member. The functions provided by
// its implementation allow the creation of a [`TreeSyncDiff`] instance, which
// in turn can be mutably operated on and merged back into the original
// [`TreeSync`] instance.
//
// The submodules of this module define the nodes of the tree (`nodes`),
// helper functions and structs for the algorithms used to sync the tree across
// the group ([`hashes`]) and the diff functionality ([`diff`]).
//
// Finally, this module contains the [`treekem`] module, which allows the
// encryption and decryption of updates to the tree.
#[cfg(any(feature = "test-utils", test))]
use std::fmt;
use openmls_traits::{
crypto::OpenMlsCrypto,
signatures::Signer,
types::{Ciphersuite, CryptoError},
};
use serde::{Deserialize, Serialize};
use thiserror::Error;
use tls_codec::{TlsDeserialize, TlsDeserializeBytes, TlsSerialize, TlsSize};
use self::{
diff::{StagedTreeSyncDiff, TreeSyncDiff},
node::{
leaf_node::{
Capabilities, LeafNodeSource, NewLeafNodeParams, TreeInfoTbs, TreePosition,
VerifiableLeafNode,
},
NodeIn,
},
treesync_node::{TreeSyncLeafNode, TreeSyncNode, TreeSyncParentNode},
};
use crate::binary_tree::array_representation::ParentNodeIndex;
#[cfg(any(feature = "test-utils", test))]
use crate::{binary_tree::array_representation::level, test_utils::bytes_to_hex};
use crate::{
binary_tree::{
array_representation::{is_node_in_tree, tree::TreeNode, LeafNodeIndex, TreeSize},
MlsBinaryTree, MlsBinaryTreeError,
},
ciphersuite::{signable::Verifiable, Secret},
credentials::CredentialWithKey,
error::LibraryError,
extensions::Extensions,
group::{GroupId, Member},
key_packages::Lifetime,
messages::{PathSecret, PathSecretError},
schedule::CommitSecret,
storage::OpenMlsProvider,
};
// Private
mod hashes;
use errors::*;
// Crate
pub(crate) mod diff;
pub(crate) mod node;
pub(crate) mod treekem;
pub(crate) mod treesync_node;
use node::encryption_keys::EncryptionKeyPair;
// Public
pub mod errors;
#[cfg(feature = "test-utils")]
pub use node::encryption_keys::test_utils;
pub use node::encryption_keys::EncryptionKey;
// Public re-exports
pub use node::{
leaf_node::{LeafNode, LeafNodeParameters, LeafNodeParametersBuilder, LeafNodeUpdateError},
parent_node::ParentNode,
Node,
};
// Tests
#[cfg(any(feature = "test-utils", test))]
pub mod tests_and_kats;
/// An exported ratchet tree as used in, e.g., [`GroupInfo`](crate::messages::group_info::GroupInfo).
#[derive(PartialEq, Eq, Clone, Debug, Serialize, Deserialize, TlsSerialize, TlsSize)]
pub struct RatchetTree(Vec<Option<Node>>);
/// An error during processing of an incoming ratchet tree.
#[derive(Error, Debug, PartialEq, Clone)]
pub enum RatchetTreeError {
/// The ratchet tree is empty.
#[error("The ratchet tree has no nodes.")]
MissingNodes,
/// The ratchet tree has a trailing blank node.
#[error("The ratchet tree has trailing blank nodes.")]
TrailingBlankNodes,
/// Invalid node signature.
#[error("Invalid node signature.")]
InvalidNodeSignature,
/// Wrong node type.
#[error("Wrong node type.")]
WrongNodeType,
}
impl RatchetTree {
/// Create a [`RatchetTree`] from a vector of nodes stripping all trailing blank nodes.
///
/// Note: The caller must ensure to call this with a vector that is *not* empty after removing all trailing blank nodes.
fn trimmed(mut nodes: Vec<Option<Node>>) -> Self {
// Remove all trailing blank nodes.
match nodes.iter().enumerate().rfind(|(_, node)| node.is_some()) {
Some((rightmost_nonempty_position, _)) => {
// We need to add 1 to `rightmost_nonempty_position` to keep the rightmost node.
nodes.resize(rightmost_nonempty_position + 1, None);
}
None => {
// If there is no rightmost non-blank node, the vector consist of blank nodes only.
nodes.clear();
}
}
debug_assert!(!nodes.is_empty(), "Caller should have ensured that `RatchetTree::trimmed` is not called with a vector that is empty after removing all trailing blank nodes.");
Self(nodes)
}
/// Create a new [`RatchetTree`] from a vector of nodes.
pub(crate) fn try_from_nodes(
ciphersuite: Ciphersuite,
crypto: &impl OpenMlsCrypto,
nodes: Vec<Option<NodeIn>>,
group_id: &GroupId,
) -> Result<Self, RatchetTreeError> {
// ValSem300: "Exported ratchet trees must not have trailing blank nodes."
//
// We can check this by only looking at the last node (if any).
match nodes.last() {
Some(None) => {
// The ratchet tree is not empty, i.e., has a last node, *but* the last node *is* blank.
Err(RatchetTreeError::TrailingBlankNodes)
}
None => {
// The ratchet tree is empty.
Err(RatchetTreeError::MissingNodes)
}
Some(Some(_)) => {
// The ratchet tree is not empty, i.e., has a last node, and the last node is not blank.
// Verify the nodes.
// https://validation.openmls.tech/#valn1407
let mut verified_nodes = Vec::new();
for (index, node) in nodes.into_iter().enumerate() {
let verified_node = match (index % 2, node) {
// Even indices must be leaf nodes.
(0, Some(NodeIn::LeafNode(leaf_node))) => {
let tree_position = TreePosition::new(
group_id.clone(),
LeafNodeIndex::new((index / 2) as u32),
);
let verifiable_leaf_node = leaf_node.into_verifiable_leaf_node();
let signature_key = verifiable_leaf_node
.signature_key()
.clone()
.into_signature_public_key_enriched(
ciphersuite.signature_algorithm(),
);
Some(Node::LeafNode(match verifiable_leaf_node {
VerifiableLeafNode::KeyPackage(leaf_node) => leaf_node
.verify(crypto, &signature_key)
.map_err(|_| RatchetTreeError::InvalidNodeSignature)?,
VerifiableLeafNode::Update(mut leaf_node) => {
leaf_node.add_tree_position(tree_position);
leaf_node
.verify(crypto, &signature_key)
.map_err(|_| RatchetTreeError::InvalidNodeSignature)?
}
VerifiableLeafNode::Commit(mut leaf_node) => {
leaf_node.add_tree_position(tree_position);
leaf_node
.verify(crypto, &signature_key)
.map_err(|_| RatchetTreeError::InvalidNodeSignature)?
}
}))
}
// Odd indices must be parent nodes.
(1, Some(NodeIn::ParentNode(parent_node))) => {
Some(Node::ParentNode(parent_node))
}
// Blank nodes.
(_, None) => None,
// All other cases are invalid.
_ => {
return Err(RatchetTreeError::WrongNodeType);
}
};
verified_nodes.push(verified_node);
}
Ok(Self::trimmed(verified_nodes))
}
}
}
}
/// A ratchet tree made of unverified nodes. This is used for deserialization
/// and verification.
#[derive(
PartialEq,
Eq,
Clone,
Debug,
Serialize,
Deserialize,
TlsDeserialize,
TlsDeserializeBytes,
TlsSerialize,
TlsSize,
)]
pub struct RatchetTreeIn(Vec<Option<NodeIn>>);
impl RatchetTreeIn {
/// Create a new [`RatchetTreeIn`] from a vector of nodes after verifying
/// the nodes.
pub fn into_verified(
self,
ciphersuite: Ciphersuite,
crypto: &impl OpenMlsCrypto,
group_id: &GroupId,
) -> Result<RatchetTree, RatchetTreeError> {
RatchetTree::try_from_nodes(ciphersuite, crypto, self.0, group_id)
}
fn from_ratchet_tree(ratchet_tree: RatchetTree) -> Self {
let nodes = ratchet_tree
.0
.into_iter()
.map(|node| node.map(NodeIn::from))
.collect();
Self(nodes)
}
#[cfg(test)]
pub(crate) fn from_nodes(nodes: Vec<Option<NodeIn>>) -> Self {
Self(nodes)
}
}
impl From<RatchetTree> for RatchetTreeIn {
fn from(ratchet_tree: RatchetTree) -> Self {
RatchetTreeIn::from_ratchet_tree(ratchet_tree)
}
}
// The following `From` implementation breaks abstraction layers and MUST
// NOT be made available outside of tests or "test-utils".
#[cfg(any(feature = "test-utils", test))]
impl From<RatchetTreeIn> for RatchetTree {
fn from(ratchet_tree_in: RatchetTreeIn) -> Self {
Self(
ratchet_tree_in
.0
.into_iter()
.map(|node| node.map(Node::from))
.collect(),
)
}
}
#[cfg(any(feature = "test-utils", test))]
fn log2(x: u32) -> usize {
if x == 0 {
return 0;
}
(31 - x.leading_zeros()) as usize
}
#[cfg(any(feature = "test-utils", test))]
pub(crate) fn root(size: u32) -> u32 {
(1 << log2(size)) - 1
}
#[cfg(any(feature = "test-utils", test))]
impl fmt::Display for RatchetTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let factor = 3;
let nodes = &self.0;
let tree_size = nodes.len() as u32;
for (i, node) in nodes.iter().enumerate() {
let level = level(i as u32);
write!(f, "{i:04}")?;
if let Some(node) = node {
let (key_bytes, parent_hash_bytes) = match node {
Node::LeafNode(leaf_node) => {
write!(f, "\tL ")?;
let key_bytes = leaf_node.encryption_key().as_slice();
let parent_hash_bytes = leaf_node
.parent_hash()
.map(bytes_to_hex)
.unwrap_or_default();
(key_bytes, parent_hash_bytes)
}
Node::ParentNode(parent_node) => {
if root(tree_size) == i as u32 {
write!(f, "\tP (*) ")?;
} else {
write!(f, "\tP ")?;
}
let key_bytes = parent_node.public_key().as_slice();
let parent_hash_string = bytes_to_hex(parent_node.parent_hash());
(key_bytes, parent_hash_string)
}
};
write!(
f,
"PK: {} PH: {} | ",
bytes_to_hex(key_bytes),
if !parent_hash_bytes.is_empty() {
parent_hash_bytes
} else {
str::repeat(" ", 32)
}
)?;
write!(f, "{}◼︎", str::repeat(" ", level * factor))?;
} else {
if root(tree_size) == i as u32 {
write!(
f,
"\t_ (*) PK: {} PH: {} | ",
str::repeat("__", 32),
str::repeat("__", 32)
)?;
} else {
write!(
f,
"\t_ PK: {} PH: {} | ",
str::repeat("__", 32),
str::repeat("__", 32)
)?;
}
write!(f, "{}❑", str::repeat(" ", level * factor))?;
}
writeln!(f)?;
}
Ok(())
}
}
/// The [`TreeSync`] struct holds an `MlsBinaryTree` instance, which contains
/// the state that is synced across the group, as well as the [`LeafNodeIndex`]
/// pointing to the leaf of this group member and the current hash of the tree.
///
/// It follows the same pattern of tree and diff as the underlying
/// `MlsBinaryTree`, where the [`TreeSync`] instance is immutable safe for
/// merging a `TreeSyncDiff`, which can be created, staged and merged (see
/// `TreeSyncDiff`).
///
/// [`TreeSync`] instance guarantee a few invariants that are checked upon
/// creating a new instance from an imported set of nodes, as well as when
/// merging a diff.
#[derive(Debug, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "test-utils"), derive(PartialEq, Clone))]
pub(crate) struct TreeSync {
tree: MlsBinaryTree<TreeSyncLeafNode, TreeSyncParentNode>,
tree_hash: Vec<u8>,
}
impl TreeSync {
/// Create a new tree with an own leaf for the given credential.
///
/// Returns the resulting [`TreeSync`] instance, as well as the
/// corresponding [`CommitSecret`].
pub(crate) fn new(
provider: &impl OpenMlsProvider,
signer: &impl Signer,
ciphersuite: Ciphersuite,
credential_with_key: CredentialWithKey,
life_time: Lifetime,
capabilities: Capabilities,
extensions: Extensions,
) -> Result<(Self, CommitSecret, EncryptionKeyPair), LibraryError> {
let new_leaf_node_params = NewLeafNodeParams {
ciphersuite,
credential_with_key,
// Creation of a group is considered to be from a key package.
leaf_node_source: LeafNodeSource::KeyPackage(life_time),
capabilities,
extensions,
tree_info_tbs: TreeInfoTbs::KeyPackage,
};
let (leaf, encryption_key_pair) = LeafNode::new(provider, signer, new_leaf_node_params)?;
let node = Node::LeafNode(leaf);
let path_secret: PathSecret = Secret::random(ciphersuite, provider.rand())
.map_err(LibraryError::unexpected_crypto_error)?
.into();
let commit_secret: CommitSecret = path_secret
.derive_path_secret(provider.crypto(), ciphersuite)?
.into();
let nodes = vec![TreeSyncNode::from(node).into()];
let tree = MlsBinaryTree::new(nodes)
.map_err(|_| LibraryError::custom("Unexpected error creating the binary tree."))?;
let mut tree_sync = Self {
tree,
tree_hash: vec![],
};
// Populate tree hash caches.
tree_sync.populate_parent_hashes(provider.crypto(), ciphersuite)?;
Ok((tree_sync, commit_secret, encryption_key_pair))
}
/// Return the tree hash of the root node of the tree.
pub(crate) fn tree_hash(&self) -> &[u8] {
self.tree_hash.as_slice()
}
/// Merge the given diff into this `TreeSync` instance, refreshing the
/// `tree_hash` value in the process.
pub(crate) fn merge_diff(&mut self, tree_sync_diff: StagedTreeSyncDiff) {
let (diff, new_tree_hash) = tree_sync_diff.into_parts();
self.tree_hash = new_tree_hash;
self.tree.merge_diff(diff);
}
/// Create an empty diff based on this [`TreeSync`] instance all operations
/// are created based on an initial, empty [`TreeSyncDiff`].
pub(crate) fn empty_diff(&self) -> TreeSyncDiff {
self.into()
}
/// A helper function that generates a [`TreeSync`] instance from the given
/// slice of nodes. It verifies that the provided encryption key is present
/// in the tree and that the invariants documented in [`TreeSync`] hold.
pub(crate) fn from_ratchet_tree(
crypto: &impl OpenMlsCrypto,
ciphersuite: Ciphersuite,
ratchet_tree: RatchetTree,
) -> Result<Self, TreeSyncFromNodesError> {
// TODO #800: Unmerged leaves should be checked
let mut ts_nodes: Vec<TreeNode<TreeSyncLeafNode, TreeSyncParentNode>> =
Vec::with_capacity(ratchet_tree.0.len());
// Set the leaf indices in all the leaves and convert the node types.
for (node_index, node_option) in ratchet_tree.0.into_iter().enumerate() {
let ts_node_option: TreeNode<TreeSyncLeafNode, TreeSyncParentNode> = match node_option {
Some(node) => TreeSyncNode::from(node).into(),
None => {
if node_index % 2 == 0 {
TreeNode::Leaf(TreeSyncLeafNode::blank())
} else {
TreeNode::Parent(TreeSyncParentNode::blank())
}
}
};
ts_nodes.push(ts_node_option);
}
let tree = MlsBinaryTree::new(ts_nodes).map_err(|_| PublicTreeError::MalformedTree)?;
let mut tree_sync = Self {
tree,
tree_hash: vec![],
};
// Verify all parent hashes.
tree_sync
.verify_parent_hashes(crypto, ciphersuite)
.map_err(|e| match e {
TreeSyncParentHashError::LibraryError(e) => e.into(),
TreeSyncParentHashError::InvalidParentHash => {
TreeSyncFromNodesError::from(PublicTreeError::InvalidParentHash)
}
})?;
// Populate tree hash caches.
tree_sync.populate_parent_hashes(crypto, ciphersuite)?;
Ok(tree_sync)
}
/// Find the `LeafNodeIndex` which a new leaf would have if it were added to the
/// tree. This is either the left-most blank node or, if there are no blank
/// leaves, the leaf count, since adding a member would extend the tree by
/// one leaf.
pub(crate) fn free_leaf_index(&self) -> LeafNodeIndex {
let diff = self.empty_diff();
diff.free_leaf_index()
}
/// Populate the parent hash caches of all nodes in the tree.
fn populate_parent_hashes(
&mut self,
crypto: &impl OpenMlsCrypto,
ciphersuite: Ciphersuite,
) -> Result<(), LibraryError> {
let diff = self.empty_diff();
// Make the diff into a staged diff. This implicitly computes the
// tree hashes and poulates the tree hash caches.
let staged_diff = diff.into_staged_diff(crypto, ciphersuite)?;
// Merge the diff.
self.merge_diff(staged_diff);
Ok(())
}
/// Verify the parent hashes of all parent nodes in the tree.
///
/// Returns an error if one of the parent nodes in the tree has an invalid
/// parent hash.
fn verify_parent_hashes(
&self,
crypto: &impl OpenMlsCrypto,
ciphersuite: Ciphersuite,
) -> Result<(), TreeSyncParentHashError> {
// The ability to verify parent hashes is required both for diffs and
// treesync instances. We choose the computationally slightly more
// expensive solution of implementing parent hash verification for the
// diff and creating an empty diff whenever we need to verify parent
// hashes for a `TreeSync` instance. At the time of writing, this
// happens only upon construction of a `TreeSync` instance from a vector
// of nodes. The alternative solution would be to create a `TreeLike`
// trait, which allows tree navigation and node access. We could then
// implement `TreeLike` for both `TreeSync` and `TreeSyncDiff` and
// finally implement parent hash verification for any struct that
// implements `TreeLike`. We choose the less complex version for now.
// Should this turn out to cause too much computational overhead, we
// should reconsider and choose the alternative sketched above
let diff = self.empty_diff();
// No need to merge the diff, since we didn't actually modify any state.
diff.verify_parent_hashes(crypto, ciphersuite)
}
/// Returns the tree size
pub(crate) fn tree_size(&self) -> TreeSize {
self.tree.tree_size()
}
/// Returns an iterator over the (non-blank) [`LeafNode`]s in the tree.
pub(crate) fn full_leaves(&self) -> impl Iterator<Item = &LeafNode> {
self.tree
.leaves()
.filter_map(|(_, tsn)| tsn.node().as_ref())
}
/// Returns an iterator over the (non-blank) [`ParentNode`]s in the tree.
pub(crate) fn full_parents(&self) -> impl Iterator<Item = (ParentNodeIndex, &ParentNode)> {
self.tree
.parents()
.filter_map(|(index, tsn)| tsn.node().as_ref().map(|pn| (index, pn)))
}
/// Returns the index of the last full leaf in the tree.
fn rightmost_full_leaf(&self) -> LeafNodeIndex {
let mut index = LeafNodeIndex::new(0);
for (leaf_index, leaf) in self.tree.leaves() {
if leaf.node().as_ref().is_some() {
index = leaf_index;
}
}
index
}
/// Returns a list of [`Member`]s containing only full nodes.
///
/// XXX: For performance reasons we probably want to have this in a borrowing
/// version as well. But it might well go away again.
pub(crate) fn full_leave_members(&self) -> impl Iterator<Item = Member> + '_ {
self.tree
.leaves()
// Filter out blank nodes
.filter_map(|(index, tsn)| tsn.node().as_ref().map(|node| (index, node)))
// Map to `Member`
.map(|(index, leaf_node)| {
Member::new(
index,
leaf_node.encryption_key().as_slice().to_vec(),
leaf_node.signature_key().as_slice().to_vec(),
leaf_node.credential().clone(),
)
})
}
/// Returns the nodes in the tree ordered according to the
/// array-representation of the underlying binary tree.
pub fn export_ratchet_tree(&self) -> RatchetTree {
let mut nodes = Vec::new();
// Determine the index of the rightmost full leaf.
let max_length = self.rightmost_full_leaf();
// We take all the leaves including the rightmost full leaf, blank
// leaves beyond that are trimmed.
let mut leaves = self
.tree
.leaves()
.map(|(_, leaf)| leaf)
.take(max_length.usize() + 1);
// Get the first leaf.
if let Some(leaf) = leaves.next() {
nodes.push(leaf.node().clone().map(Node::LeafNode));
} else {
// The tree was empty.
return RatchetTree::trimmed(vec![]);
}
// Blank parent node used for padding
let default_parent = TreeSyncParentNode::default();
// Get the parents.
let parents = self
.tree
.parents()
// Drop the index
.map(|(_, parent)| parent)
// Take the parents up to the max length
.take(max_length.usize())
// Pad the parents with blank nodes if needed
.chain(
(self.tree.parents().count()..self.tree.leaves().count() - 1)
.map(|_| &default_parent),
);
// Interleave the leaves and parents.
for (leaf, parent) in leaves.zip(parents) {
nodes.push(parent.node().clone().map(Node::ParentNode));
nodes.push(leaf.node().clone().map(Node::LeafNode));
}
RatchetTree::trimmed(nodes)
}
/// Return a reference to the leaf at the given `LeafNodeIndex` or `None` if the
/// leaf is blank.
pub(crate) fn leaf(&self, leaf_index: LeafNodeIndex) -> Option<&LeafNode> {
let tsn = self.tree.leaf(leaf_index);
tsn.node().as_ref()
}
/// Returns a [`TreeSyncError`] if the `leaf_index` is not a leaf in this
/// tree or empty.
pub(crate) fn is_leaf_in_tree(&self, leaf_index: LeafNodeIndex) -> bool {
is_node_in_tree(leaf_index.into(), self.tree.tree_size())
}
/// Return a vector containing all [`EncryptionKey`]s for which the owner of
/// the given `leaf_index` should have private key material.
pub(crate) fn owned_encryption_keys(&self, leaf_index: LeafNodeIndex) -> Vec<EncryptionKey> {
self.empty_diff()
.encryption_keys(leaf_index)
.cloned()
.collect::<Vec<EncryptionKey>>()
}
/// Derives [`EncryptionKeyPair`]s for the nodes in the shared direct path
/// of the leaves with index `leaf_index` and `sender_index`. This function
/// also checks that the derived public keys match the existing public keys.
///
/// Returns the `CommitSecret` derived from the path secret of the root
/// node, as well as the derived [`EncryptionKeyPair`]s. Returns an error if
/// the target leaf is outside of the tree.
///
/// Returns TreeSyncSetPathError::PublicKeyMismatch if the derived keys don't
/// match with the existing ones.
///
/// Returns TreeSyncSetPathError::LibraryError if the sender_index is not
/// in the tree.
pub(crate) fn derive_path_secrets(
&self,
crypto: &impl OpenMlsCrypto,
ciphersuite: Ciphersuite,
mut path_secret: PathSecret,
sender_index: LeafNodeIndex,
leaf_index: LeafNodeIndex,
) -> Result<(Vec<EncryptionKeyPair>, CommitSecret), DerivePathError> {
// We assume both nodes are in the tree, since the sender_index must be in the tree
// Skip the nodes in the subtree path for which we are an unmerged leaf.
let subtree_path = self.tree.subtree_path(leaf_index, sender_index);
let mut keypairs = Vec::new();
for parent_index in subtree_path {
// We know the node is in the tree, since it is in the subtree path
let tsn = self.tree.parent_by_index(parent_index);
// We only care about non-blank nodes.
if let Some(ref parent_node) = tsn.node() {
// If our own leaf index is not in the list of unmerged leaves
// then we should have the secret for this node.
if !parent_node.unmerged_leaves().contains(&leaf_index) {
let keypair = path_secret.derive_key_pair(crypto, ciphersuite)?;
// The derived public key should match the one in the node.
// If not, the tree is corrupt.
if parent_node.encryption_key() != keypair.public_key() {
return Err(DerivePathError::PublicKeyMismatch);
} else {
// If everything is ok, set the private key and derive
// the next path secret.
keypairs.push(keypair);
path_secret = path_secret.derive_path_secret(crypto, ciphersuite)?;
}
};
// If the leaf is blank or our index is in the list of unmerged
// leaves, go to the next node.
}
}
Ok((keypairs, path_secret.into()))
}
/// Return a reference to the parent node at the given `ParentNodeIndex` or
/// `None` if the node is blank.
pub(crate) fn parent(&self, node_index: ParentNodeIndex) -> Option<&ParentNode> {
let tsn = self.tree.parent(node_index);
tsn.node().as_ref()
}
}
#[cfg(test)]
impl TreeSync {
pub(crate) fn leaf_count(&self) -> u32 {
self.tree.leaf_count()
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(debug_assertions)]
#[test]
#[should_panic]
/// This should only panic in debug-builds.
fn test_ratchet_tree_internal_empty() {
RatchetTree::trimmed(vec![]);
}
#[cfg(debug_assertions)]
#[test]
#[should_panic]
/// This should only panic in debug-builds.
fn test_ratchet_tree_internal_empty_after_trim() {
RatchetTree::trimmed(vec![None]);
}
#[openmls_test::openmls_test]
fn test_ratchet_tree_trailing_blank_nodes(
ciphersuite: Ciphersuite,
provider: &impl OpenMlsProvider,
) {
let (key_package, _, _) = crate::key_packages::tests::key_package(ciphersuite, provider);
let node_in = NodeIn::from(Node::LeafNode(LeafNode::from(key_package)));
let tests = [
(vec![], false),
(vec![None], false),
(vec![None, None], false),
(vec![None, None, None], false),
(vec![Some(node_in.clone())], true),
(vec![Some(node_in.clone()), None], false),
(
vec![Some(node_in.clone()), None, Some(node_in.clone())],
true,
),
(
vec![Some(node_in.clone()), None, Some(node_in), None],
false,
),
];
for (test, expected) in tests.into_iter() {
let got = RatchetTree::try_from_nodes(
ciphersuite,
provider.crypto(),
test,
&GroupId::random(provider.rand()),
)
.is_ok();
assert_eq!(got, expected);
}
}
#[cfg(not(debug_assertions))]
#[test]
/// This should not panic in release-builds.
fn test_ratchet_tree_internal_empty() {
RatchetTree::trimmed(vec![]);
}
#[cfg(not(debug_assertions))]
#[test]
/// This should not panic in release-builds.
fn test_ratchet_tree_internal_empty_after_trim() {
RatchetTree::trimmed(vec![None]);
}
}