openmls/tree/
sender_ratchet.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! ### Don't Panic!
//!
//! Functions in this module should never panic. However, if there is a bug in
//! the implementation, a function will return an unrecoverable `LibraryError`.
//! This means that some functions that are not expected to fail and throw an
//! error, will still return a `Result` since they may throw a `LibraryError`.

use openmls_traits::crypto::OpenMlsCrypto;
use std::collections::VecDeque;

use openmls_traits::types::Ciphersuite;

use crate::ciphersuite::{AeadNonce, *};
use crate::tree::secret_tree::*;

use super::*;

/// The generation of a given [`SenderRatchet`].
pub(crate) type Generation = u32;
/// Stores the configuration parameters for `DecryptionRatchet`s.
///
/// **Parameters**
///
/// - out_of_order_tolerance:
///   This parameter defines a window for which decryption secrets are kept.
///   This is useful in case the DS cannot guarantee that all application messages have total order within an epoch.
///   Use this carefully, since keeping decryption secrets affects forward secrecy within an epoch.
///   The default value is 5.
/// - maximum_forward_distance:
///   This parameter defines how many incoming messages can be skipped. This is useful if the DS
///   drops application messages. The default value is 1000.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct SenderRatchetConfiguration {
    out_of_order_tolerance: Generation,
    maximum_forward_distance: Generation,
}

impl SenderRatchetConfiguration {
    /// Create a new configuration
    pub fn new(out_of_order_tolerance: Generation, maximum_forward_distance: Generation) -> Self {
        Self {
            out_of_order_tolerance,
            maximum_forward_distance,
        }
    }
    /// Get a reference to the sender ratchet configuration's out of order tolerance.
    pub fn out_of_order_tolerance(&self) -> Generation {
        self.out_of_order_tolerance
    }

    /// Get a reference to the sender ratchet configuration's maximum forward distance.
    pub fn maximum_forward_distance(&self) -> Generation {
        self.maximum_forward_distance
    }
}

impl Default for SenderRatchetConfiguration {
    fn default() -> Self {
        Self::new(5, 1000)
    }
}

/// The key material derived from a [`RatchetSecret`] meant for use with a
/// nonce-based symmetric encryption scheme.
pub(crate) type RatchetKeyMaterial = (AeadKey, AeadNonce);

/// A ratchet that can output key material either for encryption
/// ([`EncryptionRatchet`](SenderRatchet)) or decryption
/// ([`DecryptionRatchet`]). A [`DecryptionRatchet`] can be configured with an
/// `out_of_order_tolerance` and a `maximum_forward_distance` (see
/// [`SenderRatchetConfiguration`]) while an Encryption Ratchet never keeps past
/// secrets around.
#[derive(Serialize, Deserialize)]
#[cfg_attr(any(feature = "test-utils", test), derive(PartialEq, Clone))]
#[cfg_attr(any(feature = "crypto-debug", test), derive(Debug))]
pub(crate) enum SenderRatchet {
    EncryptionRatchet(RatchetSecret),
    DecryptionRatchet(DecryptionRatchet),
}

impl SenderRatchet {
    #[cfg(test)]
    pub(crate) fn generation(&self) -> Generation {
        match self {
            SenderRatchet::EncryptionRatchet(enc_ratchet) => enc_ratchet.generation(),
            SenderRatchet::DecryptionRatchet(dec_ratchet) => dec_ratchet.generation(),
        }
    }
}

/// The core of both types of [`SenderRatchet`]. It contains the current head of
/// the ratchet chain, as well as its current [`Generation`]. It can be
/// initialized with a given secret and then ratcheted forward, outputting
/// [`RatchetKeyMaterial`] and increasing its [`Generation`] each time.
#[derive(Debug, Serialize, Deserialize, Default)]
#[cfg_attr(any(feature = "test-utils", test), derive(PartialEq, Clone))]
pub(crate) struct RatchetSecret {
    secret: Secret,
    generation: Generation,
}

impl RatchetSecret {
    /// Create an initial [`RatchetSecret`] with `generation = 0` from the given
    /// [`Secret`].
    pub(crate) fn initial_ratchet_secret(secret: Secret) -> Self {
        Self {
            secret,
            generation: 0,
        }
    }

    /// Return the generation of this [`RatchetSecret`].
    pub(crate) fn generation(&self) -> Generation {
        self.generation
    }

    /// Consume this [`RatchetSecret`] to derive a pair of [`RatchetSecrets`],
    /// as well as the [`RatchetSecret`] of the next generation and return both.
    pub(crate) fn ratchet_forward(
        &mut self,
        crypto: &impl OpenMlsCrypto,
        ciphersuite: Ciphersuite,
    ) -> Result<(Generation, RatchetKeyMaterial), SecretTreeError> {
        log::trace!("Ratcheting forward in generation {}.", self.generation);
        log_crypto!(trace, "    with secret {:x?}", self.secret);

        // Check if the generation is getting too large.
        if self.generation == u32::MAX {
            return Err(SecretTreeError::RatchetTooLong);
        }
        let nonce = derive_tree_secret(
            ciphersuite,
            &self.secret,
            "nonce",
            self.generation,
            ciphersuite.aead_nonce_length(),
            crypto,
        )?;
        let key = derive_tree_secret(
            ciphersuite,
            &self.secret,
            "key",
            self.generation,
            ciphersuite.aead_key_length(),
            crypto,
        )?;
        self.secret = derive_tree_secret(
            ciphersuite,
            &self.secret,
            "secret",
            self.generation,
            ciphersuite.hash_length(),
            crypto,
        )?;
        let generation = self.generation;
        self.generation += 1;
        Ok((
            generation,
            (
                AeadKey::from_secret(key, ciphersuite),
                AeadNonce::from_secret(nonce),
            ),
        ))
    }

    #[cfg(test)]
    pub(crate) fn set_generation(&mut self, generation: Generation) {
        self.generation = generation
    }
}

/// [`SenderRatchet`] used to derive key material for decryption. It keeps the
/// [`RatchetKeyMaterial`] of epochs around until they are retrieved. This
/// behaviour can be configured via the `out_of_order_tolerance` and
/// `maximum_forward_distance` of the given [`SenderRatchetConfiguration`].
#[derive(Serialize, Deserialize)]
#[cfg_attr(any(feature = "test-utils", test), derive(PartialEq, Clone))]
#[cfg_attr(any(feature = "crypto-debug", test), derive(Debug))]
pub struct DecryptionRatchet {
    past_secrets: VecDeque<Option<RatchetKeyMaterial>>,
    ratchet_head: RatchetSecret,
}

impl DecryptionRatchet {
    /// Creates e new SenderRatchet
    pub(crate) fn new(secret: Secret) -> Self {
        Self {
            past_secrets: VecDeque::new(),
            ratchet_head: RatchetSecret::initial_ratchet_secret(secret),
        }
    }

    /// Remove elements from the `past_secrets` queue until it is within the
    /// bounds determined by the [`SenderRatchetConfiguration`].
    fn prune_past_secrets(&mut self, configuration: &SenderRatchetConfiguration) {
        self.past_secrets
            .truncate(configuration.out_of_order_tolerance() as usize)
    }

    /// Get the generation of the ratchet head.
    pub(crate) fn generation(&self) -> Generation {
        self.ratchet_head.generation()
    }

    #[cfg(test)]
    pub(crate) fn ratchet_secret_mut(&mut self) -> &mut RatchetSecret {
        &mut self.ratchet_head
    }

    /// Gets a secret from the SenderRatchet. Returns an error if the generation
    /// is out of bound.
    pub(crate) fn secret_for_decryption(
        &mut self,
        ciphersuite: Ciphersuite,
        crypto: &impl OpenMlsCrypto,
        generation: Generation,
        configuration: &SenderRatchetConfiguration,
    ) -> Result<RatchetKeyMaterial, SecretTreeError> {
        log::debug!("secret_for_decryption");
        // If generation is too distant in the future
        if self.generation() < u32::MAX - configuration.maximum_forward_distance()
            && generation > self.generation() + configuration.maximum_forward_distance()
        {
            return Err(SecretTreeError::TooDistantInTheFuture);
        }
        // If generation id too distant in the past
        if generation < self.generation()
            && (self.generation() - generation) > configuration.out_of_order_tolerance()
        {
            log::error!("  Generation is too far in the past (broke out of order tolerance ({}) {generation} < {}).", configuration.out_of_order_tolerance(), self.generation());
            return Err(SecretTreeError::TooDistantInThePast);
        }
        // If generation is the one the ratchet is currently at or in the future
        if generation >= self.generation() {
            // Ratchet the chain forward as far as necessary
            for _ in 0..(generation - self.generation()) {
                // Derive the key material
                let ratchet_secrets = {
                    self.ratchet_head
                        .ratchet_forward(crypto, ciphersuite)
                        .map(|(_, key_material)| key_material)
                }?;
                // Add it to the front of the queue
                self.past_secrets.push_front(Some(ratchet_secrets));
            }
            let ratchet_secrets = {
                self.ratchet_head
                    .ratchet_forward(crypto, ciphersuite)
                    .map(|(_, key_material)| key_material)
            }?;
            // Add an entry to the past secrets queue to keep indexing consistent.
            self.past_secrets.push_front(None);
            self.prune_past_secrets(configuration);
            Ok(ratchet_secrets)
        } else {
            // If the requested generation is within the window of past secrets,
            // we should get a positive index.
            let window_index = ((self.generation() - generation) as i32) - 1;
            // We might not have the key material (e.g. we might have discarded
            // it when generating an encryption secret).
            let index = if window_index >= 0 {
                window_index as usize
            } else {
                log::error!("  Generation is too far in the past (not in the window).");
                return Err(SecretTreeError::TooDistantInThePast);
            };
            // Get the relevant secrets from the past secrets queue.
            self.past_secrets
                .get_mut(index)
                .ok_or(SecretTreeError::IndexOutOfBounds)?
                // We use take here to replace the entry in the `past_secrets`
                // with `None`, thus achieving FS for that secret as soon as the
                // caller of this function drops it.
                .take()
                // If the requested generation was used to decrypt a message
                // earlier, throw an error.
                .ok_or(SecretTreeError::SecretReuseError)
        }
    }
}